
Embedded Coder®

Getting Started Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder® Getting Started Guide
© COPYRIGHT 2011–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.3 (Release 2012b)
March 2013 Online only Revised for Version 6.4 (Release 2013a)
September 2013 Online only Revised for Version 6.5 (Release 2013b)
March 2014 Online only Revised for Version 6.6 (Release 2014a)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Product Overview

1
Embedded Coder Product Description 1-2
Key Features . 1-2

Code Generation Technology . 1-4

Code Generation Workflows with Embedded Coder . . 1-5
Code Generation from MATLAB Code 1-6
Code Generation from Simulink Models 1-7

Validation and Verification for SystemDevelopment . . 1-9
V-Model for System Development . 1-9
Types of Simulation and Prototyping in the V-Model 1-11
Types of In-the-Loop Testing in the V-Model 1-12
Mapping of Code Generation Goals to the V-Model 1-13

Target Environments and Applications 1-30
About Target Environments . 1-30
Types of Target Environments . 1-30
Applications of Supported Target Environments 1-33

MATLAB Tutorials

2
Generate C Code from MATLAB Code 2-2
About MATLAB Coder . 2-2
Getting Started Tutorials . 2-3

Controlling C Code Style . 2-4
About This Tutorial . 2-4
Copying Files Locally . 2-5

v

Setting Up the MATLAB Coder Project 2-5
Configuring Build Parameters . 2-6
Generating the C Code . 2-7
Viewing the Generated C Code . 2-7
Key Points to Remember . 2-8
Learn More . 2-8

Generating Reentrant C Code from MATLAB Code . . . 2-9
About This Tutorial . 2-9
Copying Files Locally . 2-10
About the Example . 2-11
Providing a main Function . 2-12
Configuring Build Parameters . 2-15
Generating the C Code . 2-15
Viewing the Generated C Code . 2-15
Running the Code . 2-16
Key Points to Remember . 2-17
Learn More . 2-17

Tracing Between Generated C Code and MATLAB
Code . 2-18
About This Tutorial . 2-18
Copying Files Locally . 2-19
Configuring Build Parameters . 2-20
Generating the C Code . 2-20
Viewing the Generated C Code . 2-20
Tracing Back to the Source MATLAB Code 2-21
Key Points to Remember . 2-21
Learn More . 2-22

Simulink Code Generation Tutorials

3
Generate C Code from Simulink Models 3-2
Prerequisites . 3-2
Example Models in Tutorials . 3-2

Configure a Model for Code Generation 3-6
Solver for Code Generation . 3-6

vi Contents

Code Generation Target . 3-7
Check Model Configuration . 3-8

Generate and Analyze C Code . 3-12
Generate Code . 3-12
Analyze the Generated Code . 3-14
Trace Between Code and Model . 3-22

Customize Code Appearance . 3-24
Comments . 3-24
Identifiers . 3-25
Code Style . 3-28

Customize Function Interface and File Packaging 3-30
Model Interface . 3-30
Subsystem Interface . 3-34
Customize File Packaging . 3-35

Define Data in the Generated Code 3-37
Control Placement of Data in Generated Files 3-37
Signal Representation in the Generated Code 3-38
Parameter Representation in the Generated Code 3-42
Save Data Objects . 3-44

Deploy and Verify Executable Program 3-46
Test Harness Model . 3-46
Simulate in Normal Mode . 3-48
Simulate in SIL Mode . 3-49
Compare Simulation Results . 3-50
Improve Code Performance . 3-51
More Information About Code Generation in Model-Based
Design . 3-52

Embedded Coder Documentation 3-54
Embedded Coder Examples . 3-54

vii

Installing and Using IDE

A
Installing Eclipse IDE and Cygwin Debugger A-2
Installing the Eclipse IDE . A-2
Installing the Cygwin Debugger . A-3

Integrating and Testing Code with Eclipse IDE A-4
About Eclipse . A-4
Define a New C Project . A-4
Configure the Debugger . A-5
Start the Debugger . A-6
Set the Cygwin Path . A-6
Debugger Actions and Commands . A-7

viii Contents

1

Product Overview

• “Embedded Coder Product Description” on page 1-2

• “Code Generation Technology” on page 1-4

• “Code Generation Workflows with Embedded Coder ” on page 1-5

• “Validation and Verification for System Development” on page 1-9

• “Target Environments and Applications” on page 1-30

1 Product Overview

Embedded Coder Product Description
Generate C and C++ code optimized for embedded systems

Embedded Coder® generates readable, compact, and fast C and C++ code
for use on embedded processors, on-target rapid prototyping boards, and
microprocessors used in mass production. Embedded Coder enables additional
MATLAB® Coder™ and Simulink® Coder configuration options and advanced
optimizations for fine-grain control of the generated code’s functions, files, and
data. These optimizations improve code efficiency and facilitate integration
with legacy code, data types, and calibration parameters used in production.
You can incorporate a third-party development environment into the build
process to produce an executable for turnkey deployment on your embedded
system.

Embedded Coder offers built-in support for AUTOSAR and ASAP2 software
standards. It also provides traceability reports, code interface documentation,
and automated software verification. Support for industry standards is
available through IEC Certification Kit (for ISO 26262 and IEC 61508) and
DO Qualification Kit (for DO-178).

Learn more about MathWorks support for certification in automotive,
aerospace, and industrial automation.

Key Features

• Optimization and code configuration options that extend MATLAB Coder
and Simulink Coder

• Storage class, type, and alias definition using Simulink data dictionary
capabilities

• Processor-specific code optimization

• Multirate, multitask, and multicore code execution with or without an
RTOS

• Code verification, including SIL and PIL testing, custom comments, and
code reports with tracing of models to and from code and requirements

• Integration with Texas Instruments™ Code Composer Studio™, Analog
Devices™ VisualDSP++®, and other third-party embedded development
environments

1-2

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/do-178/
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/aerospace-defense/standards/do-178b.html
http://www.mathworks.com/industrial-automation-machinery/standards/iec-61508.html

Embedded Coder® Product Description

• Standards support, including ASAP2, AUTOSAR, DO-178, IEC 61508,
ISO 26262, and MISRA-C

1-3

1 Product Overview

Code Generation Technology
MathWorks® code generation technology generates C or C++ code and
executables for algorithms. You can write algorithms programmatically with
MATLAB or graphically in the Simulink environment. You can generate code
for MATLAB functions and Simulink blocks that are useful for real-time
or embedded applications. The generated source code and executables for
floating-point algorithms match the functional behavior of MATLAB code
execution and Simulink simulations to a high degree of fidelity. Using the
Fixed-Point Designer™ product, you can generate fixed-point code that
provides a bit-wise match to model simulation results. Such broad support
and high degree of accuracy are possible because code generation is tightly
integrated with the MATLAB and Simulink execution and simulation
engines. The built-in accelerated simulation modes in Simulink use code
generation technology.

Code generation technology and related products provide tooling that you can
apply to the V-model for system development. The V-model is a representation
of system development that highlights verification and validation steps in the
development process. For more information, see “Validation and Verification
for System Development” on page 1-9.

To learn model design patterns that include Simulink blocks, Stateflow®

charts, and MATLAB functions, and map to commonly used C constructs, see
“Modeling Patterns for C Code” in the Embedded Coder documentation.

1-4

http://www.mathworks.com/products/simfixed/

Code Generation Workflows with Embedded Coder®

Code Generation Workflows with Embedded Coder
The Embedded Coder product extends the MATLAB Coder and Simulink
Coder products with key features that you can use for embedded software
development. Using the Embedded Coder product, you can generate code that
has the clarity and efficiency of professional handwritten code. For example,
you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems.

• Customize the appearance of the generated code.

• Optimize generated code for a specific target environment.

• Integrate existing applications, functions, and data.

• Enable tracing, reporting, and testing options that facilitate code
verification activities.

Embedded Coder supports two workflows for designing, implementing, and
verifying generated C or C++ code. The following figure shows the design
and deployment environment options.

1-5

1 Product Overview

Although not shown in this figure, other products that support code
generation, such as Stateflow software, are available.

To develop algorithms with MATLAB code for code generation, see “Code
Generation from MATLAB Code” on page 1-6.

To implement algorithms as Simulink blocks and Stateflow charts in a
Simulink model, and generate C or C++ code, see “Code Generation from
Simulink Models” on page 1-7.

Code Generation from MATLAB Code
The code generation from MATLAB code workflow with Embedded Coder
requires the following products:

1-6

Code Generation Workflows with Embedded Coder®

• MATLAB

• MATLAB Coder

• Embedded Coder

MATLAB Coder supports a subset of core MATLAB language features,
including program control constructs, functions, and matrix operations. To
generate C or C++ code, you can use MATLAB Coder projects or enter the
function codegen in the MATLAB Command Window. Embedded Coder
provides additional options and advanced optimizations for fine-grain control
of the generated code’s functions, files, and data.

For more information about generating code from MATLAB code, see
“Workflow Overview” in the MATLAB Coder documentation.

To get started generating code from MATLAB code using Embedded Coder,
see “Generate C Code from MATLAB Code” on page 2-2.

Code Generation from Simulink Models
The code generation from a Simulink models workflow with Embedded Coder
requires the following products:

• MATLAB

• MATLAB Coder

• Simulink

• Simulink Coder

• Embedded Coder

You can implement algorithms as Simulink blocks and Stateflow charts
in a Simulink model. To generate production-quality C or C++ code from
a Simulink model, Embedded Coder provides additional features for
implementing, configuring, and verifying your model for code generation.

If you have algorithms written in MATLAB code, you can include the
MATLAB code in a Simulink model or subsystem by using the MATLAB
Function block. When you generate C or C++ code for a Simulink model, the

1-7

1 Product Overview

MATLAB code in the MATLAB Function block is also generated into C or C++
code and included in the generated source code.

To get started generating code from Simulink models using Embedded Coder,
see “Generate C Code from Simulink Models” on page 3-2.

To learn how to model and generate code for commonly used C constructs
using Simulink blocks, Stateflow charts, and MATLAB functions, see
“Modeling Patterns for C Code”.

1-8

Validation and Verification for System Development

Validation and Verification for System Development

In this section...

“V-Model for System Development” on page 1-9

“Types of Simulation and Prototyping in the V-Model” on page 1-11

“Types of In-the-Loop Testing in the V-Model” on page 1-12

“Mapping of Code Generation Goals to the V-Model” on page 1-13

V-Model for System Development
The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the ‘V’ identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side of the V focuses on the verification
and validation of steps cited on the left side, including software integration
and system integration.

1-9

1 Product Overview

System Specification

Coding

Software Detailed
Design

System Integration
and Calibration

 Hardware-in-the-loop
(HIL) testing

 Processor-in-the-loop
(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop
(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and its role in the process, you might focus on
one or more of the steps called out in the V-model or repeat steps at several
stages of the V-model. Code generation technology and related products
provide tooling that you can apply to the V-model for system development.
For more information about how you can apply MathWorks code generation
technology and related products provide tooling to the V-model process, see:

• “Types of Simulation and Prototyping in the V-Model” on page 1-11

• “Types of In-the-Loop Testing in the V-Model” on page 1-12

• “Mapping of Code Generation Goals to the V-Model” on page 1-13

1-10

Validation and Verification for System Development

Types of Simulation and Prototyping in the V-Model
The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
nonreal time

Test new ideas
and research

Refine and
calibrate
designs during
development
process

Execution
hardware

Host computer Host computer

Standalone
executable
runs outside
of MATLAB
and Simulink
environments

PC or nontarget
hardware

Embedded
computing
unit (ECU) or
near-production
hardware

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis
on code efficiency
and I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data during
verification

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus
less expensive and
more convenient

1-11

1 Product Overview

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

varying data sets,
interactively or
programmatically
with scripts,
without rebuilding
the model

Can connect
to Simulink
to monitor
signals and tune
parameters

Types of In-the-Loop Testing in the V-Model
The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
because code runs
on hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

1-12

Validation and Verification for System Development

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Execution
platforms

Host Target Host Target

Ease of use
and cost

Desktop
convenience

Executes only in
Simulink

Reduced
hardware cost

Executes on desk
or test bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes only on
host computer
with Simulink
and integrated
development
environment
(IDE)

Reduced
hardware cost

Executes on test
bench or in lab

Uses hardware
— processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real-time
capability

Not real time Not real time
(between samples)

Not real time
(between
samples)

Hard real time

Mapping of Code Generation Goals to the V-Model
The following tables list goals that you might have, as you apply code
generation technology, and where to find guidance on how to meet those
goals. Each table focuses on goals that pertain to a step of the V-model for
system development.

• Documenting and Validating Requirements on page 1-14

• Developing a Model Executable Specification on page 1-16

• Developing a Detailed Software Design on page 1-19

• Generating the Application Code on page 1-23

• Integrating and Verifying Software on page 1-26

• Integrating, Verifying, and Calibrating System Components on page 1-29

1-13

1 Product Overview

Documenting and Validating Requirements

Goals Related Product Information Examples

Capture requirements in
a document, spreadsheet,
data base, or requirements
management tool

“Simulink Report Generator™”

Third-party vendor tools such
as Microsoft® Word, Microsoft
Excel®, raw HTML, or IBM®

Rational® DOORS®

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated
with a model

“Requirements Traceability”
— Simulink Verification and
Validation™

Bidirectional tracing in Microsoft
Word, Microsoft Excel, HTML,
and IBM Rational DOORS

slvnvdemo_fuelsys_docreq

Include requirements links in
generated code

“Review of Requirements Links”
— Simulink Verification and
Validation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing” — Embedded
Coder

rtwdemo_hyperlinks

Verify, refine, and test concept
model in non real time on a
host system

“Modeling” — Simulink Coder

“Modeling” — Embedded Coder

“Simulation” — Simulink

“Acceleration” — Simulink

rtwdemo_fuelsys_publish

1-14

Validation and Verification for System Development

Documenting and Validating Requirements (Continued)

Goals Related Product Information Examples

Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations with
varying data sets, interactively
or programmatically with
scripts, without rebuilding the
model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that
include components and
an environment or plant that
requires variable-step solvers
and zero-crossing detection

“Rapid Simulation” — Simulink
Coder

“Host/Target Communication” —
Simulink Coder

rtwdemo_rsim_param_survey_-
script
rtwdemo_rsim_batch_script
rtwdemo_rsim_param_tuning

Distribute simulation runs
across multiple computers

“SystemTest™”

“MATLAB Distributed
Computing Server™”

“Parallel Computing Toolbox™”

1-15

1 Product Overview

Developing a Model Executable Specification

Goals Related Product
Information

Examples

Produce design artifacts for
algorithms that you develop in
MATLAB code for reviews and
archiving

“ MATLAB Report Generator”

Produce design artifacts
from Simulink and Stateflow
models for reviews and
archiving

“System Design Description”
— Simulink Report Generator

rtwdemo_codegenrpt

Add one or more components
to another environment for
system simulation

Refine a component model

Refine an integrated system
model

Verify functionality of a model
in nonreal time

Test a concept model

“Real-Time System Rapid
Prototyping”

Schedule generated code “Scheduling” — Simulink
Coder

“Handle Asynchronous
Events” — Simulink Coder

rtwdemos, select Multirate
Support folder

Specify function boundaries of
systems

“Subsystems” — Simulink
Coder rtwdemo_atomic

rtwdemo_ssreuse
rtwdemo_filepart
rtwdemo_export_functions

Specify components and
boundaries for design and
incremental code generation

“Component-Based Modeling”
— Simulink Coder

“Component-Based Modeling”
— Embedded Coder

rtwdemo_mdlreftop

1-16

Validation and Verification for System Development

Developing a Model Executable Specification (Continued)

Goals Related Product
Information

Examples

Specify function interfaces
so that external software can
compile, build, and invoke the
generated code

“Function and Class
Interfaces” — Simulink
Coder

“Function and Class
Interfaces” — Embedded
Coder

rtwdemo_fcnprotoctrl
rtwdemo_cppclass

Manage data packaging in
generated code for integrating
and packaging data

“File Packaging” — Simulink
Coder

“File Packaging ” — Embedded
Coder

“Program Builds” — Simulink
Coder

rtwdemos, select Function,
File and Data Packaging
folder

Generate and control the
format of comments and
identifiers in generated code

“Add Custom Comments to
Generated Code” — Embedded
Coder

“Customize Generated
Identifier Naming Rules”
— Embedded Coder

rtwdemo_comments
rtwdemo_symbols

Create a zip file that contains
generated code files, static
files, and dependent data to
build generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”—
Simulink Coder

rtwdemo_buildinfo

Export models for validation
in a system simulator using
shared libraries

“Shared Object Libraries” —
Embedded Coder

rtwdemo_shrlib

1-17

1 Product Overview

Developing a Model Executable Specification (Continued)

Goals Related Product
Information

Examples

Refine component and
environment model designs by
rapidly iterating between
algorithm design and
prototyping

Verify whether a component
can adequately control a
physical system in non-real
time

Evaluate system performance
before laying out hardware,
coding production software, or
committing to a fixed design

Test hardware

“Deployment” — Simulink
Coder

“Deployment” —Embedded
Coder

rtwdemo_profile

Generate code for rapid
prototyping

“Function and Class
Interfaces” — Simulink
Coder

“Entry Point Functions and
Scheduling” — Embedded
Coder

“Atomic Subsystem Code” —
Embedded Coder

rtwdemo_counter
rtwdemo_async

Generate code for rapid
prototyping in hard real time,
using PCs

“Simulink Real-Time™” doc xpcdemos

Generate code for rapid
prototyping in soft real time,
using PCs

“Real-Time Windows
Target™”

rtvdp (and others)

1-18

Validation and Verification for System Development

Developing a Detailed Software Design

Goals Related Product
Information

Examples

Refine a model design for
representation and storage of
data in generated code

“Data Representation” —
Simulink Coder

“Data Representation ” —
Embedded Coder

Select a deployment code
format

“Target” — Simulink Coder

“Target”— Embedded Coder

“Sharing Utility Code” —
Embedded Coder

“AUTOSAR Code Generation”
— Embedded Coder

rtwdemo_counter
rtwdemo_async
“AUTOSAR Examples”
in the Embedded Coder
documentation

Specify target hardware
settings

“Target” — Simulink Coder

“Target”— Embedded Coder

rtwdemo_targetsettings

Design model variants “Variant Systems” — Simulink

“Variant Systems” —
Embedded Coder

Specify fixed-point algorithms
in Simulink, Stateflow, and
the MATLAB language subset
for code generation

“Data Types and Scaling” —
Fixed-Point Designer

“Fixed-Point Code Generation”
— Fixed-Point Designer

rtwdemo_fixpt1
rtwdemo_fuelsys_fxp_publish

Convert a floating-point model
or subsystem to a fixed-point
representation

“Conversion Using Simulation
Data” — Fixed-Point Designer

“Conversion Using Range
Analysis” — Fixed-Point
Designer

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design, using
autoscaling

“Data Types and Scaling” —
Fixed-Point Designer

fxpdemo_feedback

1-19

1 Product Overview

Developing a Detailed Software Design (Continued)

Goals Related Product
Information

Examples

Create or rename data
types specifically for your
application

“User-Defined Data Types” —
Embedded Coder

“Data Type Replacement” —
Embedded Coder

rtwdemo_udt

Control the format of
identifiers in generated
code

“Customize Generated
Identifier Naming Rules”
— Embedded Coder

rtwdemo_symbols

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

“Custom Storage Classes” —
Embedded Coder

rtwdemo_cscpredef

Create a data dictionary for a
model

“Data Definition and
Declaration Management”
— Embedded Coder

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or data access

“Memory Sections” —
Embedded Coder

rtwdemo_memsec

Assess and adjust model
configuration parameters
based on the application
and an expected run-time
environment

“Configuration” — Simulink
Coder

“Configuration” — Embedded
Coder

rtwdemo_usingrtw_script
rtwdemo_usingrtwec_script

Check a model against basic
modeling guidelines

“Verify Model Syntax” —
Simulink

rtwdemo_advisor1

Add custom checks to the
Simulink Model Advisor

“Customization and
Automation”

slvnvdemo_mdladv

Check a model against custom
standards or guidelines

“Consult the Model Advisor” —
Simulink

1-20

Validation and Verification for System Development

Developing a Detailed Software Design (Continued)

Goals Related Product
Information

Examples

Check a model against
industry standards and
guidelines (MathWorks
Automotive Advisory Board
(MAAB), IEC 61508, and
DO-178B)

“Standards and Guidelines” —
Embedded Coder

“Model Guidelines Compliance”
— Simulink Verification and
Validation

rtwdemo_iec61508

Obtain model coverage for
structural coverage analysis
such as MC/DC

“Model Coverage Analysis” —
Simulink Design Verifier™

cvbasic_operation

Prove properties and generate
test vectors for models

Simulink Design Verifier
sldvdemo_cruise_control
sldvdemo_cruise_control_-
verification

Generate reports of models
and software designs

“ MATLAB Report Generator”
— MATLAB Report Generator

“Simulink Report Generator”
— Simulink Report Generator

“System Design Description”
— Simulink Report Generator

rtwdemo_codegenrpt

Conduct reviews of your model
and software designs with
coworkers, customers, and
suppliers who do not have
Simulink available

“Web Display of Model
Information” — Simulink
Report Generator

“Model Comparison” —
Simulink Report Generator

slxml_sfcar

1-21

1 Product Overview

Developing a Detailed Software Design (Continued)

Goals Related Product
Information

Examples

Refine the concept model of
your component or system

Test and validate the model
functionality in real time

Test the hardware

Obtain real-time profiles and
code metrics for analysis and
sizing based on your embedded
processor

Assess the feasibility of the
algorithm based on integration
with the environment or plant
hardware

“Deployment” — Simulink
Coder

“Deployment” — Embedded
Coder

“Code Execution Profiling” —
Embedded Coder

“Static Code Metrics” —
Embedded Coder

rtwdemos, select Desktop
IDEs, Desktop Targets,
Embedded IDEs, or
Embedded Targets

Generate source code for your
models, integrate the code
into your production build
environment, and run it on
existing hardware

“Code Generation” — Simulink
Coder

“Code Generation” —
Embedded Coder

rtwdemo_counter
rtwdemo_fcnprotoctrl
rtwdemo_cppclass
rtwdemo_async
“AUTOSAR Examples”
in the Embedded Coder
documentation

Integrate existing externally
written C or C++ code with
your model for simulation and
code generation

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Generate code for on-target
rapid prototyping on specific
embedded microprocessors
and IDEs

“Real-Time and Embedded
Systems” — Embedded Coder

In rtwdemos, select one of
the following: Desktop
IDEs, Desktop Targets,
Embedded IDEs, or
Embedded Targets

1-22

Validation and Verification for System Development

Generating the Application Code

Goals Related Product
Information

Examples

Optimize generated ANSI®

C code for production (for
example, disable floating-point
code, remove termination
and error handling code, and
combine code entry points into
single functions)

“Performance” — Simulink
Coder

“Performance” — Embedded
Coder

rtwdemos, select
Optimizations

Optimize code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” —
Embedded Coder

rtwdemo_crl_script

Control the format and style of
generated code

“Control Code Style” —
Embedded Coder

rtwdemo_parentheses

Control comments inserted
into generated code

“Add Custom Comments to
Generated Code” — Embedded
Coder

rtwdemo_comments

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customize
Post-Code-Generation Build
Processing” — Simulink Coder

rtwdemo_buildinfo

Include requirements links in
generated code

“Review of Requirements
Links” — Simulink
Verification and Validation

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing” — Embedded
Coder

“Standards and Guidelines” —
Embedded Coder

rtwdemo_comments
rtwdemo_hyperlinks

Integrate existing externally
written code with code
generated for a model

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

1-23

1 Product Overview

Generating the Application Code (Continued)

Goals Related Product
Information

Examples

Verify generated code for
MISRA C®1 and other run-time
violations

“MISRA C Guidelines” —
Embedded Coder

“Polyspace® Bug Finder™
Documentation”

“Polyspace Code Prover™
Documentation”

Protect the intellectual
property of component model
design and generated code

Generate a binary file (shared
library)

“Protected Model” — Simulink

“Shared Object Libraries” —
Embedded Coder

Generate a MEX-file
S-function for a model or
subsystem so that it can be
shared with a third-party
vendor

“Generated S-Function Block”
— Simulink Coder

Generate a shared library
for a model or subsystem so
that it can be shared with a
third-party vendor

“Shared Object Libraries” —
Embedded Coder

Test generated production
code with an environment
or plant model to verify a
conversion of the model to code

“Software-in-the-Loop (SIL)
Simulation” — Embedded
Coder

rtwdemo_sil_pil_script

1. MISRA® and MISRA C® are registered trademarks of MISRA® Ltd., held on behalf of
the MISRA® Consortium.

1-24

Validation and Verification for System Development

Generating the Application Code (Continued)

Goals Related Product
Information

Examples

Create an S-function wrapper
for calling your generated
source code from a model
running in Simulink

“Write Wrapper S-Functions”
— Simulink Coder

Set up and run SIL tests on
your host computer

“Software-in-the-Loop (SIL)
Simulation” — Embedded
Coder

rtwdemo_sil_pil_script

1-25

1 Product Overview

Integrating and Verifying Software

Goals Related Product
Information

Examples

Integrate existing externally
written C or C++ code with a
model for simulation and code
generation

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Connect to data interfaces
for generated C code data
structures

“Data Exchange” — Simulink
Coder

“Data Exchange” — Embedded
Coder

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build,
and invoke the generated code

“Function and Class
Interfaces” — Embedded
Coder

rtwdemo_fcnprotoctrl
rtwdemo_cppclass

Export virtual and
function-call subsystems

“Export Code Generated from
Model to External Application”
— Embedded Coder

rtwdemo_export_functions

Include target-specific code “Code Replacement” —
Embedded Coder

rtwdemo_crl_script

Customize and control the
build process

“Build Process” — Simulink
Coder

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static
files, and dependent data to
build the generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment” —
Simulink Coder

rtwdemo_buildinfo

1-26

Validation and Verification for System Development

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Examples

Integrate software components
as a complete system
for testing in the target
environment

“Component Verification” —
Embedded Coder

Generate source code for
integration with specific
production environments

“Code Generation”— Simulink
Coder

“Code Generation” —
Embedded Coder

rtwdemo_async
“AUTOSAR Examples”
in the Embedded Coder
documentation

Integrate code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” —
Embedded Coder

rtwdemo_crl_script

Enter special instructions or
tags for postprocessing by
third-party tools or processes

“Customize
Post-Code-Generation Build
Processing” — Simulink Coder

rtwdemo_buildinfo

Integrate existing externally
written code with code
generated for a model

“Block Creation” — Simulink

“External Code Integration” —
Simulink Coder

“External Code Integration” —
Embedded Coder

rtwdemos, select Integrating
with C Code or Integrating
with C++ Code

Connect to data interfaces
for the generated C code data
structures

“Data Exchange” — Simulink
Coder

“Data Exchange” — Embedded
Coder

rtwdemo_capi
rtwdemo_asap2

Customize and control the
build process

“Build Process” — Simulink
Coder

rtwdemo_buildinfo

1-27

1 Product Overview

Integrating and Verifying Software (Continued)

Goals Related Product
Information

Examples

Create a zip file that contains
generated code files, static
files, and dependent data for
building the generated code
in an environment other than
your host computer

“Relocate Code to Another
Development Environment” —
Simulink Coder

rtwdemo_buildinfo

Schedule the generated code “Time-Based Scheduling” —
Simulink Coder

rtwdemos, select Multirate
Support

Verify object code files in a
target environment

“Software-in-the-Loop (SIL)
Simulation” — Embedded
Coder

rtwdemo_sil_pil_script

Set up and run PIL tests on
your target system

“Processor-in-the-Loop (PIL)
Simulation” — Embedded
Coder

rtwdemo_sil_pil_script
rtwdemo_custom_pil_script
rtwdemo_rtiostream_script
See the list of supported
hardware for the Embedded
Coder product on the
MathWorks Web site, and
then find an example for the
related product of interest

1-28

http://www.mathworks.com/hardware-support/index.html?q= product:"Embedded+Coder"
http://www.mathworks.com/hardware-support/index.html?q= product:"Embedded+Coder"

Validation and Verification for System Development

Integrating, Verifying, and Calibrating System Components

Goals Related Product
Information

Examples

Integrate the software and
its microprocessor with the
hardware environment for
the final embedded system
product

Add the complexity of the
environment (or plant) under
control to the test platform

Test and verify the embedded
system or control unit by using
a real-time target environment

“Hardware-in-the-Loop (HIL)
Simulation” — Embedded
Coder

Generate source code for HIL
testing

“Code Generation”— Simulink
Coder

“Code Generation” —
Embedded Coder

“Hardware-in-the-Loop (HIL)
Simulation” — Embedded
Coder

Conduct hard real-time HIL
testing using PCs

“Simulink Real-Time” doc xpcdemos

Tune ECU properly for its
intended use

“Data Exchange” — Simulink
Coder

“Data Exchange” — Embedded
Coder

Generate ASAP2 data files “ASAP2 Data Measurement
and Calibration” — Simulink
Coder

rtwdemo_asap2

Generate C API data interface
files

“Data Interchange Using C
API” — Simulink Coder

rtwdemo_capi

1-29

1 Product Overview

Target Environments and Applications

In this section...

“About Target Environments” on page 1-30

“Types of Target Environments” on page 1-30

“Applications of Supported Target Environments” on page 1-33

About Target Environments
In addition to generating source code, the code generator produces make or
project files to build an executable program for a specific target environment.
The generated make or project files are optional. If you prefer, you can
build an executable for the generated source files by using an existing
target build environment, such as a third-party integrated development
environment (IDE). Applications of generated code range from calling a few
exported C or C++ functions on a host computer to generating a complete
executable program using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

The code generator provides built-in system target files that generate, build,
and execute code for specific target environments. These system target files
offer varying degrees of support for interacting with the generated code to
log data, tune parameters, and experiment with or without Simulink as the
external interface to your generated code.

Types of Target Environments
Before you select a system target file, identify the target environment on
which you expect to execute your generated code. The most common target
environments include environments listed in the following table.

1-30

Target Environments and Applications

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®2 environment that uses a non-real-time
operating system, such as Microsoft Windows® or Linux®3. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
those operating systems might suspend code execution to run an operating
system service and then, after providing the service, continue code
execution. Therefore, the executable for your generated code might run
faster or slower than the sample rates that you specified in your model.

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• Simulink Real-Time system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time. The exact nature of execution varies
based on the particular behavior of the system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and run as
a standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) to process communication signals to inexpensive
8-bit fixed-point microcontrollers in mass production (for example, electronic
parts produced in the millions of units). Embedded microprocessors can:

• Use a full-featured RTOS

2. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

3. Linux® is a registered trademark of Linus Torvalds.

1-31

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/

1 Product Overview

Target
Environment

Description

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with code generation

A target environment can:

• Have single- or multiple-core CPUs

• Be a standalone computer or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits, such
as early verification of a component.

The following figure shows example target environments for code generated
for a model.

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-32

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

Target Environments and Applications

Applications of Supported Target Environments
The following table lists several ways that you can apply code generation
technology in the context of the different target environments.

Application Description

Host Computer

“Acceleration” You apply techniques to speed up the
execution of model simulation in the
context of the MATLAB and Simulink
environments. Accelerated simulations
are especially useful when run time is
long compared to the time associated
with compilation and checking whether
the target is up to date.

“Rapid Simulation” You execute code generated for a model
in non-real-time on the host computer,
but outside the context of the MATLAB
and Simulink environments.

“Shared Object Libraries” You integrate components into a
larger system. You provide generated
source code and related dependencies
for building a system in another
environment or in a host-based
shared library to which other code can
dynamically link.

“Protect a Referenced Model” You generate a protected model for
use by a third-party vendor in another
Simulink simulation environment.

Real-Time Simulator

“Real-Time System Rapid Prototyping” You generate, deploy, and tune code on
a real-time simulator connected to the
system hardware (for example, physical
plant or vehicle) being controlled. This
design step is crucial for validating
whether a component can control the
physical system.

1-33

1 Product Overview

Application Description

“Integration and Reusable Components” You integrate generated source code
and dependencies for components into
a larger system that is built in another
environment. You can use shared
library files for intellectual property
protection.

“Real-Time System Rapid Prototyping” You generate code for a detailed design
that you can run in real time on an
embedded microprocessor while tuning
parameters and monitoring real-time
data. This design step allows you to
assess, interact with, and optimize
code, using embedded compilers and
hardware.

Embedded Microprocessor

“Code Generation” From a model, you generate code
that is optimized for speed, memory
usage, simplicity, and possibly,
compliance with industry standards
and guidelines.

“Software-in-the-Loop (SIL) Simulation” You execute generated code with
your plant model within Simulink
to verify conversion of the model to
code. You might change the code to
emulate target word size behavior
and verify numerical results expected
when the code runs on an embedded
microprocessor. Or, you might use
actual target word sizes and just test
production code behavior.

1-34

Target Environments and Applications

Application Description

“Processor-in-the-Loop (PIL) Simulation” You test an object code component
with a plant or environment model
in an open- or closed-loop simulation
to verify model-to-code conversion,
cross-compilation, and software
integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or
embedded computing unit (ECU), using
a real-time target environment.

1-35

1 Product Overview

1-36

2

MATLAB Tutorials

• “Generate C Code from MATLAB Code” on page 2-2

• “Controlling C Code Style” on page 2-4

• “Generating Reentrant C Code from MATLAB Code” on page 2-9

• “Tracing Between Generated C Code and MATLAB Code” on page 2-18

2 MATLAB® Tutorials

Generate C Code from MATLAB Code

In this section...

“About MATLAB® Coder™” on page 2-2

“Getting Started Tutorials” on page 2-3

About MATLAB Coder
MATLAB Coder generates standalone C and C++ from MATLAB code. The
generated source code is portable and readable. MATLAB Coder supports
a subset of core MATLAB language features, including program control
constructs, functions, and matrix operations. It can generate MEX functions
that let you accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code.

When generating C and C++ code from MATLAB code, follow this workflow.

How Embedded Coder Works With MATLAB Coder
The Embedded Coder product extends the MATLAB Coder product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you can generate code that has the clarity
and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

• Customize the appearance of the generated code

• Optimize the generated code for a specific target environment

• Enable tracing options that help you to verify the generated code

• Generate reusable, reentrant code

2-2

Generate C Code from MATLAB® Code

Getting Started Tutorials
The following tutorials will help you get started with using Embedded Coder
to generate code from MATLAB code for embedded system applications.

• “Controlling C Code Style” on page 2-4

• “Generating Reentrant C Code from MATLAB Code” on page 2-9

• “Tracing Between Generated C Code and MATLAB Code” on page 2-18

Prerequisites
To complete these tutorials, you must install the following products:

• MATLAB

• MATLAB Coder

• Embedded Coder

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

You must set up the C compiler before generating C code. See “Setting Up the
C or C++ Compiler” in the MATLAB Coder documentation.

For instructions on installing MathWorks products, see the MATLAB
installation documentation for your platform. If you have installed MATLAB
and want to check which other MathWorks products are installed, in the
MATLAB Command Window, enter ver .

Setting Up Tutorial Files
The tutorial files are available in the following folder:
matlabroot\help\toolbox\ecoder\examples. To run the
tutorials, copy these files to a local folder. Each tutorial provides instructions
about which files to copy and how to copy them.

2-3

2 MATLAB® Tutorials

Controlling C Code Style

In this section...

“About This Tutorial” on page 2-4

“Copying Files Locally” on page 2-5

“Setting Up the MATLAB® Coder™ Project” on page 2-5

“Configuring Build Parameters” on page 2-6

“Generating the C Code” on page 2-7

“Viewing the Generated C Code” on page 2-7

“Key Points to Remember” on page 2-8

“Learn More” on page 2-8

About This Tutorial

Learning Objectives
This tutorial shows you how to:

• Generate code for if-elseif-else decision logic as switch-case
statements.

• Automatically generate C code from your MATLAB code using MATLAB
Coder.

• Configure code generation configuration parameters in the MATLAB Coder
project.

• Generate a code generation report that you can use to view and debug
your MATLAB code.

Prerequisites
To complete this tutorial, install the required products and set up your C
compiler as described in “Prerequisites” on page 2-3.

2-4

Controlling C Code Style

Required Files

Type Name Description

Function code test_code_style.m MATLAB example that
uses if-elseif-else .

To run the tutorial, copy this file to a local folder. For instructions, see
“Copying Files Locally” on page 2-5.

Copying Files Locally
Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\ecoder\work.

2 Change to the matlabroot\help\toolbox\ecoder\examples folder. At
the MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))

3 Copy the file test_code_style.m to your local working folder.

Your work folder now contains the file you need to complete this tutorial.

Setting Up the MATLAB Coder Project

1 Set your MATLAB current folder to the work folder that contains the file
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path of the work folder containing your files.

2 At the MATLAB command line, enter

coder -new code_style.prj

By default, the project opens in the MATLAB workspace on the right side.

2-5

2 MATLAB® Tutorials

3 On the project Overview tab, click the Add files link and browse to the
file test_code_style.m and then click OK to add the file to the project.

4 Define the type of input x.

Why Specify an Input Definition?

Because C and C++ are statically-typed languages, MATLAB Coder
must determine the properties of variables in the MATLAB files at code
generation time. For more information, see “Primary Function Input
Specification” in the MATLAB Coder documentation.

On the Overview tab, select the input parameter x and then click the
Actions icon to the right of this parameter to open the context menu.

5 From the menu, select Define Type.

6 In the Define Type dialog box, set Class to int16. Click OK.

Note The Convert if-elseif-else patterns to switch-case
statements optimization works only for integer and enumerated type
inputs.

Configuring Build Parameters

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, set the Output type to C/C++ Static Library.

3 On the Build tab, click the More settings link to view the project settings.

4 In the Project Settings dialog box, click the Code Appearance tab.

5 On the Code Appearance tab, select Convert if-elseif-else patterns to
switch-case statements.

6 On the Debugging tab, verify that Always create a code generation
report is selected and then close the dialog box.

2-6

Controlling C Code Style

Generating the C Code
On the Build tab, click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates a C static library, test_code_style.lib, and C code in the
/codegen/lib/test_code_style subfolder. Because you selected report
generation, MATLAB Coder provides a link to the report on the Results tab.

Viewing the Generated C Code
MATLAB Coder generates C code in the file test_code_style.c.

To view the generated code:

1 On the Build tab Results pane, click the View report link to open the
code generation report.

2 In the report, click the C code tab.

3 On this tab, click the test_code_style.c link.

MATLAB Coder converts the if-elseif-else pattern to the following
switch-case statements:

switch (x) {
case 1:
y = 1.0;
break;

case 2:
y = 2.0;
break;

case 3:
y = 3.0;
break;

default:
y = 4.0;
break;

2-7

2 MATLAB® Tutorials

}

Key Points to Remember

• Use the More settings option on the MATLAB Coder project Build tab
to open the Project Settings dialog box where you can configure code
generation options.

• Use the View Report option on the MATLAB Coder project Build tab
to open the code generation report.

Learn More

To... See...

Learn how to create and set up a MATLAB
Coder project

“MATLAB Coder Project Set Up Workflow”

Learn how to generate C/C++ code from
MATLAB code at the command line

codegen

2-8

Generating Reentrant C Code from MATLAB® Code

Generating Reentrant C Code from MATLAB Code

In this section...

“About This Tutorial” on page 2-9

“Copying Files Locally” on page 2-10

“About the Example” on page 2-11

“Providing a main Function” on page 2-12

“Configuring Build Parameters” on page 2-15

“Generating the C Code” on page 2-15

“Viewing the Generated C Code” on page 2-15

“Running the Code” on page 2-16

“Key Points to Remember” on page 2-17

“Learn More” on page 2-17

About This Tutorial

Learning Objectives
This tutorial shows you how to:

• Generate reentrant code from MATLAB code that does not use persistent
or global data

Note This example runs on Windows only.

• Automatically generate C code from your MATLAB code.

• Define function input properties at the command line.

• Specify code generation properties.

• Generate a code generation report that you can use to view and debug
your MATLAB code.

2-9

2 MATLAB® Tutorials

Prerequisites
To complete this tutorial, install the required products and set up your C
compiler as described in “Prerequisites” on page 2-3

Required Files

Type Name Description

Function code matrix_exp.m MATLAB Function
that computes matrix
exponential of the input
matrix using Taylor
series and returns the
computed output.

C main function main.c Calls the reentrant
code.

To run the tutorial, copy these files to a local folder. For instructions, see
“Copying Files Locally” on page 2-10.

Copying Files Locally
Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\ecoder\work.

2 Change to the matlabroot\help\toolbox\ecoder\examples folder. At
the MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))

3 Copy the reentrant_win folder to your local working folder.

Your work folder now contains the files you need to complete this tutorial.

4 Set your MATLAB current folder to the work folder that contains your files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path of the work folder containing your files.

2-10

Generating Reentrant C Code from MATLAB® Code

About the Example
This example requires libraries that are specific to the Microsoft Windows
operating system and, therefore, runs only on Windows platforms. It is a
simple, multithreaded example that does not use persistent or global data.
Two threads call the MATLAB function matrix_exp with different sets of
input data.

Contents of matrix_exp.m

function Y = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential of

% the input matrix using Taylor series and returns the

% computed output.

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E;

When you generate reusable, reentrant code, codegen supports dynamic
allocation of function variables that are too large for the stack, as well
as persistent and global variables. codegen generates a header file,
primary_function_name_types.h, which you must include when using the
generated code. This header file contains the following structures:

• primary_function_nameStackData

Contains the user allocated memory. You must pass a pointer to this
structure as the first parameter to functions that use it directly, because
the function uses a field in the structure, or indirectly, because the function
passes the structure to a called function.

2-11

2 MATLAB® Tutorials

If the algorithm uses persistent or global data, the
primary_function_nameStackData structure also contains a
pointer to the primary_function_namePersistentData structure.
Including this pointer means that you have to pass only one parameter to
each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, codegen provides a
separate structure for them and adds a pointer to this structure to the
memory allocation structure. Having a separate structure for persistent
and global variables allows you to allocate memory for these variables
once and share them with all threads if desired. However, if there is not
communication between threads, you can choose to allocate memory for
these variables per thread or per application.

Providing a main Function
To call the reentrant code, you must provide a main function that:

• Includes the generated header file matrix_exp.h. This file includes the
generated header file, matrix_exp_types.h.

• For each thread, allocates memory for stack data.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions” in the
MATLAB Coder documentation.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack data.

2-12

Generating Reentrant C Code from MATLAB® Code

Contents of main.c

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

matrix_expStackData* spillData;

} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */

DWORD WINAPI thread_function(PVOID dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize();

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);

matrix_exp_terminate();

return 0;

}

void main() {

HANDLE thread1, thread2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

data1.spillData = sd1;

data2.spillData = sd2;

2-13

2 MATLAB® Tutorials

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

/*Initializing the 2 threads and passing data to the thread functions*/

printf("Starting thread 1...\n");

thread1 = CreateThread(NULL , 0, thread_function, (PVOID) &data1, 0, NULL);

if (thread1 == NULL){

perror("Thread 1 creation failed.");

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);

if (thread2 == NULL){

perror("Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){

perror("Thread 1 join failed.");

exit(EXIT_FAILURE);

}

if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){

perror("Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

printf("Finished Execution!\n");

exit(EXIT_SUCCESS);

}

2-14

Generating Reentrant C Code from MATLAB® Code

Configuring Build Parameters
You enable generation of reentrant code using a code generation configuration
object.

1 Create a configuration object.

e = coder.config('exe', 'ecoder', true);

This command creates a coder.EmbeddedCodeConfig object which contains
the configuration parameters that the codegen function needs to generate
standalone C/C++ static libraries and executables for an embedded target.

2 Enable reentrant code generation.

e.MultiInstanceCode = true;

Generating the C Code
Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object e.

• main.c to include this file in the compilation.

• -report to create a code generation report.

• -args to specify an example input with the class, size, and complexity.

codegen -config e main.c -report matrix_exp.m -args ones(160,160)

codegen generates a C executable, matrix_exp.exe, in the current folder and
C code in the /codegen/exe/matrix_exp subfolder. Because you selected
report generation, codegen provides a link to the report.

Viewing the Generated C Code
codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local
variables that are too large to fit on the stack.

To view this header file:

1 Click the View report link to open the code generation report.

2-15

2 MATLAB® Tutorials

2 In the report, click the C code tab.

3 On this tab, click the link to matrix_exp_types.h.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

struct {

real_T F[25600];

real_T Y[25600];

} f0;

} matrix_expStackData;

#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code
Call the code, first verifying that the example is running on Windows
platforms.

% This example can only be run on Windows platforms

if ~ispc

error('This example requires Windows-specific libraries and can only be run on

Windows.');

end

system('matrix_exp.exe')

The executable runs and reports completion.

2-16

Generating Reentrant C Code from MATLAB® Code

Key Points to Remember

• Create a main function that

- Includes the generated header file, primary_function_name_types.h.
This file defines the primary_function_nameStackData global
structure. This structure contains local variables that are too large to
fit on the stack.

- For each thread, allocates memory for stack data.

- Calls primary_function_name_initialize .

- Calls primary_function_name.

- Calls primary_function_name_terminate.

- Frees the memory used for stack data.

• Use the -config option to pass the code generation configuration object to
the codegen function.

• Use the -args option to specify input parameters at the command line.

• Use the -report option to create a code generation report.

Learn More

To... See...

Learn more about the generated code API “Generated Code API”

Call reentrant code without persistent or global
data on UNIX

“Call Reentrant Code with No Persistent or
Global Data (UNIX Only)”

Call reentrant code with persistent data on
Windows

“Call Reentrant Code — Multithreaded with
Persistent Data (Windows Only)”

Call reentrant code with persistent data on
UNIX

“Call Reentrant Code — Multithreaded with
Persistent Data (UNIX Only)”

2-17

2 MATLAB® Tutorials

Tracing Between Generated C Code and MATLAB Code

In this section...

“About This Tutorial” on page 2-18

“Copying Files Locally” on page 2-19

“Configuring Build Parameters” on page 2-20

“Generating the C Code” on page 2-20

“Viewing the Generated C Code” on page 2-20

“Tracing Back to the Source MATLAB Code” on page 2-21

“Key Points to Remember” on page 2-21

“Learn More” on page 2-22

About This Tutorial

Learning Objectives
This tutorial shows you how to:

• Generate code that includes the MATLAB source code as comments.

• Include the function help text in the function header of the generated code.

• Use the code generation report to trace from the generated code to the
source code.

Prerequisites
To complete this tutorial, install the required products and set up your C
compiler as described in “Prerequisites” on page 2-3

2-18

Tracing Between Generated C Code and MATLAB Code

Required File

Type Name Description

Function code polar2cartesian.m Simple MATLAB
function that contains a
comment

To run the tutorial, copy this file to a local folder. For instructions, see
“Copying Files Locally” on page 2-19.

Copying Files Locally
Copy the tutorial file to a local working folder.

1 Create a local working folder, for example, c:\ecoder\work.

2 Change to the matlabroot\help\toolbox\ecoder\examples folder. At
the MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))

3 Copy the polar2cartesian.m file to your local working folder.

Your work folder now contains the file you need to complete this tutorial.

4 Set your MATLAB current folder to the work folder that contains the file
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path of the work folder containing your files.

Contents of polar2cartesian.m

function [x y] = polar2cartesian(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

2-19

2 MATLAB® Tutorials

Configuring Build Parameters

1 Create a coder.EmbeddedCodeConfig code generation configuration object.

cfg = coder.config('lib', 'ecoder', true);

2 Enable the MATLABSourceCode option to include MATLAB source code as
comments in the generated code and the function signature in the function
banner.

cfg.MATLABSourceComments = true;

3 Enable the MATLBFcnDesc option to include the function help text in the
function banner.

cfg.MATLABFcnDesc = true;

Generating the C Code
Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object cfg.

• -report to create a code generation report.

• -args to specify the class, size, and complexity of the input parameters.

codegen -config cfg -report polar2cartesian -args {0, 0}

codegen generates a C static library, polar2cartesian.lib, and C code in
the /codegen/lib/polar2cartesian subfolder. Because you selected report
generation, codegen provides a link to the report.

Viewing the Generated C Code
codegen generates C code in the file polar2cartesian.c.

To view the generated code:

1 Click the View report link to open the code generation report.

2 In the report, click the C code tab.

2-20

Tracing Between Generated C Code and MATLAB Code

3 On this tab, click the polar2cartesian.c link.

Examine the generated code. The function help text Convert polar to
Cartesian appears in the function header. The source code appears as
comments in the generated code.

/*
* function [x y] = polar2cartesian(r,theta)
* Convert polar to Cartesian
*/
void straightline(real_T r, real_T theta, ...

real_T *x, real_T *y)
{

/* 'polar2cartesian:4' x = r * cos(theta); */
*x = r * cos(theta);
/* 'polar2cartesian:5' y = r * sin(theta); */
*y = r * sin(theta);

}

Tracing Back to the Source MATLAB Code
To trace back to the source code, click a traceability tag.

For example, to view the MATLAB code for the C code, x = r * cos(theta);,
click the 'polar2cartesian:4' traceability tag.

The source code file polar2cartesian.m opens in the MATLAB editor with
line 4 highlighted.

Key Points to Remember

• Create a coder.EmbeddedCodeConfig configuration object and enable the:

- MATLABSourceCode option to include MATLAB source code as comments
in the generated code and the function signature in the function banner

- MATLBFcnDesc option to include the function help text in the function
banner

• Use the -config option to pass the code generation configuration object to
the codegen function.

2-21

2 MATLAB® Tutorials

• Use the -report option to create a code generation report.

• Use the -args option to specify the class, size, and complexity of input
parameters.

Learn More

To... See...

Learn more about code traceability “About Code Traceability”

Learn about the location of comments in the
generated code

“Location of Comments in Generated Code”

See traceability limitations “Traceability Limitations”

2-22

3

Simulink Code Generation
Tutorials

• “Generate C Code from Simulink Models” on page 3-2

• “Configure a Model for Code Generation” on page 3-6

• “Generate and Analyze C Code” on page 3-12

• “Customize Code Appearance” on page 3-24

• “Customize Function Interface and File Packaging” on page 3-30

• “Define Data in the Generated Code” on page 3-37

• “Deploy and Verify Executable Program” on page 3-46

• “Embedded Coder Documentation” on page 3-54

3 Simulink® Code Generation Tutorials

Generate C Code from Simulink Models

In this section...

“Prerequisites” on page 3-2

“Example Models in Tutorials” on page 3-2

Embedded Coder generates readable, compact, and fast C and C++ code
for use on embedded processors, on-target rapid prototyping boards, and
microprocessors used in mass production. You can generate code for a wide
variety of applications. These tutorials focus on real-time deployment of a
discrete-time control system. The tutorials include how to:

• “Configure a Model for Code Generation” on page 3-6

• “Generate and Analyze C Code” on page 3-12

• “Customize Function Interface and File Packaging” on page 3-30

• “Define Data in the Generated Code” on page 3-37

• “Customize Code Appearance” on page 3-24

• “Deploy and Verify Executable Program” on page 3-46

Prerequisites
To complete these tutorials, you must install the following products:

• MATLAB

• MATLAB Coder

• Simulink

• Simulink Coder

• Embedded Coder

Example Models in Tutorials
The code verification and validation process depends on your model meeting
your requirements and exactly representing your design. Functionality in the
model must be traceable back to model requirements. You can use reviews,
analysis, simulations, and requirements-based tests to prove that your

3-2

Generate C Code from Simulink® Models

original requirements are met by your design and that the design does not
contain unintended functionality. Performing verification and validation
activities at each step of the process can reduce expensive errors during
production.

The Embedded Coder tutorials use the rtwdemo_roll model, which has been
verified for simulation. To open the model, in the Command Window, type:

rtwdemo_roll

The model opens in the Simulink Editor.

The rtwdemo_roll model implements a basic roll axis autopilot algorithm,
which controls the aileron position of an aircraft.

3-3

3 Simulink® Code Generation Tutorials

There are two operating modes: roll attitude hold and heading hold.
The mode logic for these modes is external to this model. The model
architecture uses atomic subsystems to represent the roll angle reference
(RollAngleReference), heading hold mode (HeadingMode), and basic roll
attitude (BasicRollMode) functions as atomic subsystems. The roll attitude
control function is a PID controller that uses roll attitude and roll rate
feedback to produce an aileron command. The input to the controller is either
a basic roll angle reference or a roll command to track the desired heading.
The controller operates at 40 Hz.

3-4

Generate C Code from Simulink® Models

Two additional models are provided for the Embedded Coder tutorials:

• rtwdemo_roll_codegen: This model is rtwdemo_roll configured for code
generation with optimizations applied according to the code generation
objectives.

• rtwdemo_roll_harness: This model is a harness model to test
rtwdemo_roll_codegen.

To begin the tutorials for code generation, see the first example, “Configure a
Model for Code Generation” on page 3-6.

3-5

3 Simulink® Code Generation Tutorials

Configure a Model for Code Generation

In this section...

“Solver for Code Generation” on page 3-6

“Code Generation Target” on page 3-7

“Check Model Configuration” on page 3-8

Model configuration parameter settings determine how a model simulates and
how the software generates code and builds an executable for the model. You
specify the model configuration parameters on the Configuration Parameters
dialog box or at the command line. The settings in the Configuration
Parameters dialog box specify the model’s active configuration set, which is
saved with the model.

When generating code for an embedded system, choosing the model
configuration settings can be complex. At a minimum, you must configure
the solver, system target file, hardware implementation, and optimizations
according to your application requirements.

Solver for Code Generation
To prepare the model for generating C89/C90 compliant C code:

1 If rtwdemo_roll is not already open, in the Command Window, type:

rtwdemo_roll

2 Save the model to a local folder as roll.slx.

3 To open the Configuration Parameters dialog box, on the Simulink Editor
toolbar, click the Model Configuration Parameters icon.

4 In the Configuration Parameters dialog box, in the left navigation pane,
select the Solver pane.

3-6

Configure a Model for Code Generation

To generate code, the model must use a fixed-step solver, which maintains
a constant (fixed) step size. In the generated code, the Solver parameter
applies a fixed-step integration technique for computing the state derivative
of the model. The Fixed-step size parameter sets the base rate, which must
be the lowest common multiple of all rates in the system. For roll, the
following solver settings are selected.

Code Generation Target
To specify a target configuration for the model, you can choose a ready-to-run
Embedded Real-Time Target (ERT) configuration. The code generator uses
this target file to generate code that is optimized for embedded system
deployment.

1 In the Configuration Parameters dialog box, select the Code Generation
pane.

2 To open the System Target File Browser dialog box, click the System
target file parameter Browse button. The System Target File Browser
dialog box includes a list of available targets. This example uses the system
target file ert.tlc Embedded Coder, which is already set.

3-7

3 Simulink® Code Generation Tutorials

3 In the System Target File Browser dialog box, click OK.

Check Model Configuration
When generating code for real-time deployment, your application might have
objectives related to code efficiency, memory usage, safety precaution, and
traceability. You can run the Code Generation Advisor to assess whether
the model configuration settings meet your set of prioritized objectives.
After running the advisor, you get information on how to modify your model
configuration parameters to meet the specified objectives.

Set Code Generation Objectives with Code Generation Advisor

1 In the Configuration Parameters dialog box, select the Code Generation
pane.

2 Click Set Objectives.

3 In the Select Objectives dialog box, the following objectives are in the
Selected objectives — prioritized list in the following order: Execution
efficiency, Traceability, Safety precaution, and RAM efficiency.

3-8

Configure a Model for Code Generation

4 Click OK. In the Configuration Parameters dialog box, the selected
objectives are shown in the Prioritized objectives list.

Check Model Against Code Generation Objectives

1 In the Configuration Parameters dialog box, on the Code Generation
pane, click Check Model.

2 In the System Selector dialog box, click OK to run checks on roll.

3-9

3 Simulink® Code Generation Tutorials

The Code Generation Advisor window opens. After the advisor runs, in the
left pane, there are two warnings indicated by yellow triangles.

View Model Configuration Recommendations
In the Code Generation Advisor window:

1 In the left pane, click Check model configuration settings against
code generation objectives.

2 In the right pane, review the recommendations for the configuration
parameters in the table.

3 To change the configuration parameters that caused the warnings to the
software-recommended settings, click Modify Parameters. The Result
table displays the parameters and changed values. Clicking a parameter
name displays Configuration Parameters dialog box pane where the
parameter exists.

3-10

Configure a Model for Code Generation

4 In the left pane, click the next warning for Identify blocks that generate
expensive fixed-point and saturation code.

5 In the right pane, find the first warning, Identify Discrete Integrator
blocks for questionable fixed-point operations. Under the warning,
click the link to the Integrator block.

In the Simulink Editor, the Integrator block is highlighted in blue.

6 Right-click the Integrator block and in the list, select Block
Parameters(DiscreteIntegrator).

7 In the Block Parameter dialog box, set the Initial condition setting to
State (most efficient).

8 Click Apply and OK.

9 Save your model.

The example model rtwdemo_roll_codegen contains the modifications made
in this example to rtwdemo_roll. The next example shows how to generate
code, examine the code, and trace between the code and model. See “Generate
and Analyze C Code” on page 3-12.

3-11

3 Simulink® Code Generation Tutorials

Generate and Analyze C Code

In this section...

“Generate Code” on page 3-12

“Analyze the Generated Code” on page 3-14

“Trace Between Code and Model” on page 3-22

After configuring your model for code generation, you generate and view
the code. To analyze the generated code, you can generate an HTML code
generation report that provides a view of the generated code and information
about the code. This example uses the configured model roll from the
example, “Generate and Analyze C Code” on page 3-12. For this example,
open rtwdemo_roll_codegen and save it to a local folder as roll.slx.

Generate Code
Before generating code, you can specify that the code generation process
generates an HTML report that includes the generated code and information
about the model. This information helps you to evaluate the generated code.

1 Open the Configuration Parameters dialog box.

2 In the left navigation pane, select the Code Generation > Report pane.

3 Observe the selected parameters that create a code generation report and
include traceability between the code to the model.

• “Create code generation report”

• “Open report automatically”

• “Code-to-model”

• “Model-to-code”, which enables the Traceability Report Contents
parameters.

4 To include static code metrics in the code generation report, confirm that
“Static code metrics” is selected.

3-12

Generate and Analyze C Code

5 On the Code Generation pane, select the Generate code only check box.

6 Click Apply.

7 Click Generate Code. You can also press Ctrl+B to generate code.

After the code generation process is complete, the HTML code generation
report opens.

3-13

3 Simulink® Code Generation Tutorials

Note If you close the code generation report, you can reopen the report from
the Simulink Editor by selecting the menu option: Code > C/C++ Code >
Code Generation Report > Open Model Report.

Analyze the Generated Code
The code generation process places the source code files in the build folder
roll_ert_rtw. The HTML code generation report files are placed in
the roll_ert_rtw/html folder. The code generation report includes the

3-14

Generate and Analyze C Code

generated code and several reports that provide information for evaluating
the generated code. The following sections describe each of these reports:

• “Subsystem Report” on page 3-15

• “Code Interface Report” on page 3-16

• “Traceability Report” on page 3-18

• “Static Code Metrics Report” on page 3-19

• “Code Replacements Report” on page 3-20

• “Generated Code” on page 3-20

Subsystem Report
To open the subsystem report, in the left pane of the code generation report,
click Subsystem Report. You can implement nonvirtual subsystems as
inlined, void/void functions, or reusable functions. In the subsystem report,
you can view information on how nonvirtual subsystems are configured in
the model and implemented in the code. In the Code Mapping section, the
subsystem report provides traceability from the table to the Subsystem block
in the model. The table includes information about whether a subsystem is
configured for reuse and if the subsystem function code is reused.

3-15

3 Simulink® Code Generation Tutorials

The Code Reuse Exceptions section provides information on subsystems
configured for reuse, but code reuse does not occur. For this model, there are
no reuse exceptions.

Code Interface Report
The code interface report provides documentation of the generated code
interface for consumers of the generated code. The generated code interface
includes model entry point functions and interface data. The information in
the report can help facilitate code reviews and code integration. There are
potentially three entry point functions to initialize, step, and terminate the
real-time capable code. The code generated for this model has an initialize
and step function.

3-16

Generate and Analyze C Code

For roll, the Inports and Outports sections include block names that you
can click to navigate to the corresponding block in the model. The other
columns in the table include the name for the block, the data type, and
dimension as it is represented in the generated code.

3-17

3 Simulink® Code Generation Tutorials

Traceability Report
To map model objects to and from the generated code, open the traceability
report. The Eliminated / Virtual Blocks table lists objects that are virtual
or eliminated from the generated code due to an optimization.

In the Traceable Simulink Blocks / Stateflow Objects / MATLAB
Functions table, click an Object Name to highlight the object in the model
diagram. You can also click the corresponding Code Location, which
displays the generated code for that object.

3-18

Generate and Analyze C Code

Static Code Metrics Report
You can monitor code metrics as you develop your model and refine its
configuration. The code generator performs static analysis of the generated
C code and provides these metrics in the static code metrics report. Static
analysis of the generated code is performed only on the source code without
executing the program. Information in the report includes metrics on files,
global variables, and functions. For example, the Global Variables table

3-19

3 Simulink® Code Generation Tutorials

includes information for each global variable: size, number of reads and
writes, and number of reads and writes in a function.

Code Replacements Report
You can use the code replacements report to determine which code
replacement library (CRL) functions you use in the generated code. The
report includes traceability from each replacement instance back to the block
that triggered the replacement. For this model, no code replacement library
is specified.

Generated Code
You can view the generated code source files in the code generation report.
Click the file names in the left navigation pane. The generated model.c file
roll.c contains the algorithm code, including the ODE solver code. The model
data and entry point functions are accessible to a caller by including roll.h.
In the left navigation pane, click roll.h to view the extern declarations for
block outputs, continuous states, model output, entry points, and timing data.

3-20

Generate and Analyze C Code

3-21

3 Simulink® Code Generation Tutorials

Trace Between Code and Model
To verify the generated code, you can specify that your model generates
hyperlinks in the source code in the code generation report. The hyperlinks
trace to the corresponding element in the model. For this example, roll is set
up to include traceability. To enable traceability and generate hyperlinks the
following parameters must be selected:

• On the Code Generation > Report pane:

- “Code-to-model”

- “Model-to-code”

• On the Code Generation > Comments pane:

- “Include comments”

- “Simulink block / Stateflow object comments”

Trace from Model to Code
To trace from roll to the code generation report, in the Simulink Editor,
right-click the HeadingMode subsystem. From the menu list, select C/C++
code > Navigate to C/C++ code. In the code generation report, the source
code for HeadingMode is highlighted.

Trace from Code to Model
To trace from the code generation report to the model, in the left navigation
pane of the code generation report, select roll.c. Comments in the code
contain underlined text that are hyperlinks to the model. For example, when
you click the hyperlink for RollAngleReference:

3-22

Generate and Analyze C Code

the RollAngleReference subsystem is highlighted in the Simulink Editor.

After reviewing the reports and analyzing the generated code, you can change
the appearance of the generated code according to defined style standards. To
change the generation of comments, identifiers, and code style, see the next
example, “Customize Code Appearance” on page 3-24.

3-23

3 Simulink® Code Generation Tutorials

Customize Code Appearance

In this section...

“Comments” on page 3-24

“Identifiers” on page 3-25

“Code Style” on page 3-28

Modifying the code appearance helps you to adhere to your coding standards
and enhance the readability of the code for code reviews. You can change the
appearance of the generated code by specifying comment style, customizing
identifier names, and choosing from several code style parameters. This
example uses the configured model roll from the example, “Generate and
Analyze C Code” on page 3-12. For this example, open rtwdemo_roll_codegen
and save it to a local folder as roll.slx.

Comments
To customize the appearance of comments in the generated code for model
roll, open the Configuration Parameters dialog box and select the Code
Generation > Comments pane.

In the model roll, “Include comments” is selected to include comments in the
generated code and enable the other comment parameters. If you configured

3-24

Customize Code Appearance

your model for traceability, enabling comments provides traceability
hyperlinks in the generate code comments.

The Custom comments group of parameters provides additional options for
controlling specific comments for model elements.

Identifiers
To customize the appearance of identifiers in the generated code, in the
Configuration Parameters dialog box, select the Code Generation >
Symbols pane. The Auto-generated identifier naming rules group of
parameters allows you to include a string of predefined tokens to customize
the generated identifier names. In the model roll, the tokens specified are
the default values.

3-25

3 Simulink® Code Generation Tutorials

Common tokens to include are:

• $M: The $M token is a name mangling string to avoid naming collisions. The
position of the $M token determines the position of the name mangling
string in the generated identifier. For most of the variables that you
customize, this token is required in the specification. The Minimum
mangle length parameter determines the size of the mangling string.

• $N: This token includes the name of a model object (block, signal or signal
object, state, parameter, shared utility function, or parameter object) for
which the identifier is being generated.

3-26

Customize Code Appearance

• $R: This token inserts the root model name into the identifier. When you
use referenced models, this token is required.

For example, in the roll model, the Local block output variables is
specified with an rtb prefix.

1 If the code generation report is not open, generate code for the roll model.

2 In the HTML code generation report, in the left navigation pane, select
roll.c.

3 At the top of the window, in the Find box, type rtb and press Enter.

Variables beginning with rtb are highlighted in the report.

4 To navigate between instances, use the up and down arrows in the code
generation report.

3-27

3 Simulink® Code Generation Tutorials

Code Style
To customize the appearance of the generated code, in the Configuration
Parameters dialog box, click the Code Generation > Code Style pane.

The parameters allow you to control the following code styles:

• Level of parenthesization

• Order of operands in expressions

• Empty primary condition expressions in if statements

• Whether to generate code for if-elseif-else decision logic as
switch-case statements

• Whether to include the extern keyword in function declarations

• Whether to generate default cases for switch-case statements in the code
for Stateflow charts

• Code indentation

With Embedded Coder, you can specify how the software generates function
interfaces and packages the generated files. For more information, see the

3-28

Customize Code Appearance

next example, “Customize Function Interface and File Packaging” on page
3-30.

3-29

3 Simulink® Code Generation Tutorials

Customize Function Interface and File Packaging

In this section...

“Model Interface” on page 3-30

“Subsystem Interface” on page 3-34

“Customize File Packaging” on page 3-35

With Embedded Coder, you can specify the function interfaces for models
and atomic subsystems in the generated code. You can also specify how the
code is placed into files and folders. This example uses the configured model
roll from the example, “Generate and Analyze C Code” on page 3-12. For
this example, open rtwdemo_roll_codegen and save it to a local folder as
roll.slx.

Model Interface
You can configure the interface of the code for the model in the Configuration
Parameters dialog box, on the Code Generation > Interface pane. By
default, the model’s entry points are implemented as void/void functions.
Model roll is set to generate nonreusable code with a minimal function
interface.

When configuring the model interface, you can choose whether to produce
reusable or nonreusable code. Reusable code consists of reentrant functions
that can be called with different data sets. In general, nonreusable code
executes more efficiently in an embedded system because nonreentrant
functions can avoid pointer dereference.

For this example, roll is configured to generate a nonreusable function
interface. Verify that Code interface packaging is set to Nonreusable
function.

3-30

Customize Function Interface and File Packaging

For roll, the interface settings direct the code generator to create two entry
point functions to initialize and step through algorithm code.

Configuration Parameter Description

Single output/update function is
selected

Produce a single entry point function
to step the model

Terminate function required is
cleared

Eliminate the entry point function to
terminate the model

Suppress error status in
real-time model data structure
is selected

Remove the error status field in the
real-time model data structure

Combine signal/state structures
is selected

Produce a single data structure for
the model’s global data

The software generates this code based on the following assumptions:

• The solver setting indicates that the step function executes the code at
40 Hz.

• The initialize function is called once prior to executing the step function.

Configure Model Initialize and Step Functions
You can specify the names of the model initialize and step function, and the
function prototype of the model step function.

3-31

3 Simulink® Code Generation Tutorials

1 To open the Model Interface dialog box, on the Interface pane, click
Configure Model Functions.

2 In the Model Interface dialog box, specify Function specification as
Model specific C prototypes.

3 Click Get Default Configuration. The Model Interface dialog box
expands to display the Configure model initialize and step functions
parameters.

3-32

Customize Function Interface and File Packaging

4 Change Initialize function name to roll_init.

3-33

3 Simulink® Code Generation Tutorials

5 Change Step function name to roll_step.

6 In the Step function arguments table, verify that the order of the first
two arguments is Phi and then Psi. You can use the Up and Down buttons
to reorder the arguments.

7 Modify the third return argument, P, to a Pointer in the Category column.

8 Change the Outport, Ail_Cmd, to return by Value in the Category column.

9 Click Validate, so that consistency checking is performed on the interface
specification.

10 Click Apply and OK.

11 In the Simulink Editor, press Ctrl+B to generate the code. In the code
generation report, see that the code matches the specification.

Subsystem Interface
You can configure how the software implements atomic subsystems in the
generated code. In the Simulink editor, locate the subsystem, BasicRollMode.

1 Right-click BasicRollMode and select Block Parameters (Subsystem).

2 In the Function Block Parameters dialog box, click the Code Generation
tab. The Function packaging parameter Auto option instructs the
software to use its heuristic to implement the system efficiently, based
on its usage in the model. Otherwise, you can specify the function

3-34

Customize Function Interface and File Packaging

implementation based on criteria that you are using for execution speed
and memory utilization.

3 Specify the Function packaging parameter as Nonreusable function.

4 To use the block name as the function name, in the dialog box, specify
Function name options as Use subsystem name.

5 To place the code for the function in a separate file and use the function
name, specify File name options as Use function name.

6 To pass the subsystem inputs and outputs as arguments to the function,
specify Function interface as Allow arguments.

7 Click Apply and OK.

8 Press Ctrl+B to generate the code. Verify that the subsystem code is in
roll_BasicRollMode.c and its declaration is in roll_BasicRollMode.h.

Customize File Packaging
In the previous section, using the Subsystem block parameters, you specified
file packaging of the generated code at the subsystem level. You can also
configure file packaging at the model level.

3-35

3 Simulink® Code Generation Tutorials

In the Configuration Parameters dialog box, on the Code Generation
> Code Placement pane, you can specify the File packaging format
parameter with the following options: Modular, Compact (with separate
data file), and Compact. This parameter instructs the code generator to
modularize the code into many files or compact the generated code into a few
files. If your model contains referenced models, you can specify a different
file packaging format for each referenced model.

For your model roll, the File packaging format is set to Modular.
Therefore, the code generator creates the following files:

• roll.c

• roll.h

• roll_private.h

• roll_types.h

• Subsystem files: roll_BasicRollMode.c and roll_BasicRollMode.c

This example showed how to configure the function interfaces for a model and
a subsystem. The example showed how to configure your model to modularize
the generated code into different file packaging formats. The next example
shows how to set up your model to specify how data appears in the generated
code. For more information, see “Define Data in the Generated Code” on
page 3-37.

3-36

Define Data in the Generated Code

Define Data in the Generated Code

In this section...

“Control Placement of Data in Generated Files” on page 3-37

“Signal Representation in the Generated Code” on page 3-38

“Parameter Representation in the Generated Code” on page 3-42

“Save Data Objects” on page 3-44

To control how model data is represented in the generated code, you can
specify Simulink data objects. With data objects, you can create variables in
the base workspace that allow you to parameterize the specification of model
data, such as signals and parameters. You can use the variables to specify
parameter and signal attributes. These variables also determine how each
parameter and signal is defined and declared in the generated code.

This example uses the configured model roll from the example, “Generate and
Analyze C Code” on page 3-12. For this example, open rtwdemo_roll_codegen
and save it to a local folder as roll.slx.

Control Placement of Data in Generated Files
At the model level, you can control which generated files contain model data
definitions and declarations. Separating the data declaration and assignment
simplifies the integration of the code into the production environment.

1 For model roll, open the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, open Code
Generation > Code Placement.

3 Set Data definition to Data defined in a single separate source
file. Set Data declaration to Data declared in a single separate
header file.

3-37

3 Simulink® Code Generation Tutorials

4 Click Apply and OK.

When data objects are defined for this model, code generation places code in
global.c and global.h, which are stored in the roll_ert_rtw folder.

Signal Representation in the Generated Code

Specify Storage Class for Signal Data
A storage class specification of a signal, parameter, or data object provides you
with control over how that entity is declared, stored, and represented in the
generated code. As you are preparing to generate code, consider how many
data entities in your model that you want to specify as a data object. If there
are a large number, you can use the Data Object Wizard to find candidates
in your model and create data objects. These steps show this workflow using
two signals in the model roll.

1 In the Simulink Editor, select Code > Data Objects > Data Object
Wizard.

2 In the Data Object Wizard, in the Find options group, select all of the
check boxes.

3 Click Find.

4 Click the check boxes next to ailCmd and phiCmd.

5 From the Choose package for selected data objects drop-down list,
verify that Simulink is selected.

3-38

Define Data in the Generated Code

6 Click Apply Package to apply the default Simulink package for the data
objects.

7 Click Create to create the data objects. When the data objects are created
in the base workspace, the signal names no longer appear in the Data
Object Wizard.

8 Close the Data Object Wizard.

9 In the Simulink Editor, open the Model Explorer by clicking the icon.

10 In the Model Explorer, on the left pane, in the Model hierarchy tree, click
Base Workspace. The newly created data objects are now listed in the
base workspace (center pane).

The next step is to associate the data objects with the signals.

Configure Signal Data Objects
To configure the new signal data objects ailCmd and phiCmd, define the
data objects such that the code generator places them in a struct in the
generated code.

1 In the Model Explorer, with the Base Workspace available in the center
pane, select ailCmd.

The Simulink.Signal properties are displayed in the right pane.

2 Specify the Storage class as Struct (Custom).

3-39

3 Simulink® Code Generation Tutorials

3 Specify StructName as signal_data.

4 Click Apply.

5 Repeat steps 1 through 4 for phiCmd. ailCmd and phiCmd use the same
StructName, signal_data.

6 Press Ctrl+B to generate code.

3-40

Define Data in the Generated Code

Now the variables ailCmd and phiCmd are defined in a struct in
roll_types.h and used in roll.c. The struct definition looks similar to
the following:

/* Type definition for custom storage class: Struct */
typedef struct signal_data_tag {
real32_T phiCmd;
real32_T ailCmd;
} signal_data_type;

Resolve Signal with Data Object
You must specify that a signal name is associated with a data object in the
base workspace. For each signal, ailCmd and phiCmd, do the following:

1 In the Simulink Editor, right-click the signal line.

2 From the list, select Properties.

3 In the Signal Properties dialog box, observe that the Signal name must
resolve to Simulink signal object parameter is selected. When the Data
Object Wizard created Simulink.Signal data objects, the software set
this parameter.

4 Click OK.

Notice the signal object icon on the signal. This icon is another indication that
the signal is associated with a Simulink.Signal object in the base workspace.

3-41

3 Simulink® Code Generation Tutorials

Parameter Representation in the Generated Code
An alternative workflow to using the Data Object Wizard is to add objects to
the base workspace in the Model Explorer. You can add objects for both signals
and parameters. This example shows how to create Simulink.Parameter
objects for constant values in the model roll.

1 In the Simulink Editor, double-click the subsystem RollAngleReference.
Locate the Constant blocks UpThr and LoThr.

2 For each Constant block:

a Right-click the block and select Block Parameters (Constant) from
the list.

b In the Block Parameter dialog box, replace the numeric Constant value
with the corresponding variable name: upThr for 6, or loThr for -6.

c Click Apply and OK.

3-42

Define Data in the Generated Code

3 In the Model Explorer, in the left navigation pane, select Base Workspace.

4 From the menu bar, select Add > Simulink.Parameter. This action
creates a Simulink.Parameter object with the default name Param in the
center pane.

5 In the center pane, click the name of the object and rename it to upThr.
Press Enter. The data object properties for upThr are displayed in the
right pane.

6 In the right pane, specify the properties as follows:

• Value is 6

• Storage class is ExportTofile (Custom)

• HeaderFile is specified as threshold

7 Click Apply.

8 Repeat steps 4 through 7 for loThr, using -6 as the Value.

In the Model Explorer, this graphic is how the base workspace appears.

From the Simulink Editor, press Ctrl+B to generate code. In the code
generation report, select threshold.h. In the file, find the data declarations
for upThr and loThr.

3-43

3 Simulink® Code Generation Tutorials

For further customization, you can define your own custom storage classes
tailored to your code generation requirements. Use the Custom Storage Class
Designer (cscdesigner) tool to design your own custom storage classes.

Save Data Objects
Data objects stored in the base workspace are not saved with the model. You
can save data objects to a MAT-file or a MATLAB-file. Whenever you open
your model, you must import the data file or set up your model to use the
PreLoadFcn callback to populate the base workspace.

Save Workspace Variables as a MATLAB-file

1 In the base workspace, select all of the data objects so that they are
highlighted.

2 Right-click the highlighted variables and select Export Selected.

3 In the Export to File dialog box, enter the File name roll_data and
specify Save as type (on Linux, Files of Type) as MATLAB-files(*.m)
from the list.

4 Click Save.

A MATLAB script is generated. When the script runs, it creates the data
objects in the base workspace.

Add MATLAB-file to a Model Callback
When you have data for a model stored in a file, you can manually import the
data file, or set up a model callback so that the data loads when you open
a model.

1 For model roll, in the Simulink Editor, select File > Model Properties >
Model Properties.

2 In the Model Properties dialog box, select the Callbacks tab.

3 In the left pane, select PreLoadFcn.

4 In the Model pre-load function text box, type: roll_data.

3-44

Define Data in the Generated Code

5 Click Apply and OK.

6 Save the model.

Now, when you load the model roll, the MATLAB script, roll_data.m runs
and creates the data objects in the base workspace.

This example shows how to define data objects to represent signal and
parameter data in the generated code. The next example shows how to deploy
and verify an executable program for your model. For more information, see
“Deploy and Verify Executable Program” on page 3-46.

3-45

3 Simulink® Code Generation Tutorials

Deploy and Verify Executable Program

In this section...

“Test Harness Model” on page 3-46

“Simulate in Normal Mode” on page 3-48

“Simulate in SIL Mode” on page 3-49

“Compare Simulation Results” on page 3-50

“Improve Code Performance” on page 3-51

“More Information About Code Generation in Model-Based Design” on page
3-52

To verify code execution results, you can use software-in-the-loop (SIL) and
processor-in-the-loop (PIL) testing. A SIL simulation involves compiling and
running production source code on your host computer. A PIL simulation
involves cross-compiling and running production object code on a target
processor or an equivalent instruction set simulator. Embedded Coder
automates execution of generated code in Simulink for SIL testing or on
the embedded target for PIL testing using Simulink simulation modes or
S-function blocks. You can use SIL and PIL simulations to:

• Verify the numerical behavior of your code.

• Collect code metrics such as code coverage and execution profiling data.

• Optimize your code.

• Progress towards achieving IEC 61508, ISO 26262, or DO-178 certification.

This example simulates a test harness model in normal mode, and then
simulates the model in SIL mode. Results are logged to the Simulation Data
Inspector. Comparing the results helps you verify that simulating the model
produces the same results as executing the generated code.

Test Harness Model
One method for verifying the code generated for a model is to use a test
harness model that includes the model to be tested as a referenced model.
You can generate a test harness model with Simulink Verification and

3-46

Deploy and Verify Executable Program

Validation software. With a test harness model, you can easily switch the
Model block between normal, SIL, or PIL simulation mode. Test vectors
provide a baseline for the behavior of the generated code and verify that
the model meets requirements. This example uses a test harness model,
rtwdemo_roll_harness, which generates test inputs to the referenced model,
rtwdemo_roll_codegen.

When running in SIL simulation mode, the configuration parameters for the
top model and the referenced model must match.

1 Open the example models rtwdemo_roll_harness and
rtwdemo_roll_codegen.

2 Save rtwdemo_roll_harness as roll_harness to a local folder.

3 Open the Configuration Parameters dialog box for rtwdemo_roll_codegen.

4 On the Code Generation pane, verify that the Generate code only
check box is not selected.

5 If you make changes, click Apply and OK.

3-47

3 Simulink® Code Generation Tutorials

Simulate in Normal Mode
Run the harness model in normal mode and capture the results in the
Simulation Data Inspector.

1 To log data to the Simulation Data Inspector for model roll_harness, on
the Simulink Editor toolbar, click Record.

2 Right-click the Model block, Roll Axis Autopilot, and from the context
menu, select Block Parameters(ModelReference).

3 In the Block Parameters dialog box, for Simulation mode, verify that the
Normal option is selected. Click OK.

4 Simulate roll_harness.

5 When the simulation is done, view the simulation results in the Simulation
Data Inspector. If the tool is not already open, in the Simulink Editor, click
the link in the notification bar to open the Simulation Data Inspector.

6 If the Signal Name column is not present:

a Right-click the Signal Browser column titles. From the context menu,
add Signal Name.

b Click the Change Grouping link below the Signal Browser table. In
the Signal Browser, specify the first Then By as Logged Variable.

c Click OK.

7 For the new run, click the run name field and rename the run:
roll_harness: Normal mode.

8 Expand the run and select ailCmd to plot the signal.

3-48

Deploy and Verify Executable Program

Simulate in SIL Mode
In a SIL simulation, code is generated, compiled, and executed on the host
computer. Results are logged in the Simulation Data Inspector, in addition to
the results from running in normal mode.

1 In the roll_harness model window, right-click the Roll Axis Autopilot
model block and select Block Parameters (ModelReference).

2 In the Block Parameters dialog box, specify Simulation mode as
Software-in-the-loop (SIL).

3 On the Simulink Editor toolbar, verify that the Record button is selected.

3-49

3 Simulink® Code Generation Tutorials

4 Simulate the roll_harness model.

5 In the Simulation Data Inspector, click the run name field and rename the
new run to roll_harness: SIL mode.

6 Expand the run and select Ail_Cmd to plot the signal.

Compare Simulation Results
In the Simulation Data Inspector:

1 Click the Compare Runs tab.

2 For Run 1, select roll_harness: Normal mode. For Run 2, select
roll_harness: SIL mode.

3 Click Compare.

4 Plot the first result, roll_harness/Roll Axis Autopilot, by selecting the
option button in the Plot column.

3-50

Deploy and Verify Executable Program

If you find differences in testing results, it is important to investigate
and understand the differences. Some differences can be attributed to
implementation changes (converting from an interpreted model to an
executable implementation), or can be an indication of bugs. You must
understand all differences to confirm that the behavior of the system is free
of bugs.

Improve Code Performance
To generate code that meets code performance requirements, you can design
and configure your model to support code generator optimizations. You can
use the Code Generation Advisor for guidance on configuring your model
to meet code generation objectives.

3-51

3 Simulink® Code Generation Tutorials

After testing your model and code, you can fine-tune your model configuration
to improve the code performance. For a specific performance goal, Embedded
Coder provides model configuration parameters on the Optimization panes
to help you improve memory usage and reduce execution time.

When choosing optimization parameters for your model, consider the
trade-offs of one optimization over another optimization. Improving one area
of performance can sacrifice another area of performance. For example,
reducing memory usage can sacrifice execution efficiency.

More Information About Code Generation in
Model-Based Design
The following table includes links to additional information for generating,
executing, and verifying production code for your model.

To See

Consider model design and
configuration for code generation

“Model Architecture and Design”

Generate code variants using macros
for preprocessor compilation from
models

“Variant Systems”

Achieve code reuse “Subsystems” and “Referenced
Models”

Define and control model data “Data Representation ”

Control generation of function and
class interfaces

“Function and Class Interfaces”

Control naming and partitioning
of data and code across generated
source files

“File Packaging ”

Select and configure the target
environment for your application

“Target”

Configure model for code generation
objectives, such as efficiency or
safety

“Application Objectives”

3-52

Deploy and Verify Executable Program

To See

Configure parameters for specifying
identifier names, code comments,
style, and templates

“Code Appearance”

Export component XML description
and C code for AUTOSAR run-time
environment

“AUTOSAR Code Generation”

Deployment of standalone programs
to target hardware

“Standalone Programs”

Choose and apply integration paths
and methods

“External Code Integration”

Improve code performance, such as
memory usage and execution speed

“Performance”

Collect code coverage metrics for
generated code during SIL or PIL
simulation, using a third-party tool
to measure test completeness

“Code Coverage”

SIL and PIL testing “Software-in-the-Loop
(SIL) Simulation” and
“Processor-in-the-Loop (PIL)
Simulation”

View and analyze execution profiles
of code sections

“Code Execution Profiling”

3-53

3 Simulink® Code Generation Tutorials

Embedded Coder Documentation
The Embedded Coder documentation is divided into two categories:

• Code Generation from MATLAB Code

Provides information on generating C and C++ code from MATLAB code.
This documentation is targeted to customers who are not generating code
from Simulink models and do not have the Simulink and Simulink Coder
products. To get started generating C and C++ code from MATLAB code,
see “Generate C Code from MATLAB Code” on page 2-2.

• Code Generation from Simulink Models

Provides information on generating C and C++ code from Simulink models.
This documentation is targeted for customers who are generating code from
Simulink models and have the Simulink and Simulink Coder products.
Typically, these customers generate C and C++ code from MATLAB code
by using the MATLAB Function block in a Simulink model. To get started
generating C and C++ code from Simulink models, see “Generate C Code
from Simulink Models” on page 3-2.

Embedded Coder Examples
Simulink Coder and Embedded Coder provide a variety of example models
that illustrate code generation tasks for rapid simulation and production code
generation. You can access these models from the documentation. At the top
of the product landing page, click Examples.

3-54

Embedded Coder Documentation

3-55

3 Simulink® Code Generation Tutorials

3-56

A

Installing and Using IDE

• “Installing Eclipse IDE and Cygwin Debugger” on page A-2

• “Integrating and Testing Code with Eclipse IDE” on page A-4

A Installing and Using IDE

Installing Eclipse IDE and Cygwin Debugger

In this section...

“Installing the Eclipse IDE” on page A-2

“Installing the Cygwin Debugger” on page A-3

Installing the Eclipse IDE
This section describes how to install the Eclipse™ IDE for C/C++ Developers
and the Cygwin™ debugger for use with the integration and verification
tutorials. Installing and using the Eclipse IDE for C/C++ Developers and
the Cygwin debugger is optional. Alternatively, you can use another
Integrated Development Environment (IDE) or use equivalent tools such as
command-line compilers and makefiles.

1 From the Eclipse Downloads web page (http://www.eclipse.org/downloads/),
download the Eclipse IDE for C/C++ Developers to your C: drive.

You also need the Eclipse C/C++ Development Tools (CDT) that are
compatible with the Eclipse IDE. You can install the CDT as part of the
Eclipse C/C++ IDE packaged zip file or you can install it into an existing
version of the Eclipse IDE.

If You Install the CDT... Then...

As part of the Eclipse C/C++
IDE packaged zip file

Go to step 4

Into an existing version of the
Eclipse IDE

Go to step 2

2 From the Eclipse CDT Downloads page
(http://www.eclipse.org/cdt/downloads.php), download the Eclipse C/C++
Development Tools (CDT) that is compatible with your installed version of
the Eclipse IDE.

3 Unzip the downloaded Eclipse CDT zip file. Copy the contents of the
directories features and plugins to the corresponding directories in
c:\eclipse.

A-2

Installing Eclipse™ IDE and Cygwin™ Debugger

4 Create the folder c:\eclipse.

5 Unzip the downloaded Eclipse IDE zip file into c:\eclipse.

6 On your desktop, create a link to the executable file
c:\eclipse\eclipse.exe.

Installing the Cygwin Debugger

1 From the Cygwin home page (http://www.cygwin.com), download the
Cygwin setup.exe file.

2 Run the setup.exe file. A Cygwin Setup - Choose Installation Type dialog
box opens.

3 Follow the installation procedure:

• Select the option for installing over the Internet.

• Accept the default root folder c:\cygwin.

• Specify a local package folder. For example, specify c:\cygwin\packages.

• Specify how you want to connect to the Internet.

• Choose a download site.

4 In the dialog box for selecting packages, set the Devel category to Install
by clicking the selector icon .

5 Add the folder c:\cygwin\bin to your system Path variable. For example,
on a Windows XP system:

a Click Start > Settings > Control
Panel > System > Advanced > Environment Variables.

b Under System variables, select the Path variable and click Edit.

c Add c:\cygwin\bin to the variable value and click OK.

Note To use Cygwin, your build folder must be on your C drive. The folder
path cannot include spaces.

A-3

A Installing and Using IDE

Integrating and Testing Code with Eclipse IDE

In this section...

“About Eclipse” on page A-4

“Define a New C Project” on page A-4

“Configure the Debugger” on page A-5

“Start the Debugger” on page A-6

“Set the Cygwin Path” on page A-6

“Debugger Actions and Commands” on page A-7

About Eclipse
Eclipse (www.eclipse.org) is an integrated development environment for
developing and debugging embedded software. Cygwin (www.cygwin.com)
is an environment that is similar to the Linux environment, but runs on
Windows and includes the GCC compiler and debugger.

This section contains instructions for using the Eclipse IDE with Cygwin tools
to build, run, test, and debug projects that include generated code. There are
many other software packages and tools that can work with code generation
software to perform similar tasks.

“Installing Eclipse IDE and Cygwin Debugger” on page A-2 contains
instructions for installing Eclipse and Cygwin. Before proceeding, be sure you
have installed Eclipse and Cygwin, as described in that section.

To use Cygwin, your build folder must be on your C drive. The folder path
cannot include spaces.

Define a New C Project

1 In Eclipse, choose File > New > C Project. A C Project dialog box opens.

2 In the C Project dialog box:

A-4

http://www.eclipse.org/
http://www.cygwin.com/

Integrating and Testing Code with Eclipse™ IDE

a In the Project name field, type the project name throttlecntrl_##
(## is externenv or testcode) .

b In the Location field, specify the location of your build folder (for
example, C:\EclipseProjects\throttlecntrl\externenv).

c In the Project type selection box, select and expandMakefile project.

d Click the Empty Project node.

e Under Other Toolchains, select Cygwin GCC .

f Click Next. A Select Configurations dialog box opens.

3 In the Select Configurations dialog box, click Advanced settings. The
Properties dialog box appears.

4 In the Properties dialog box:

a Select C/C++ Build.

b Select Generate Makefiles automatically.

c Select the Behavior tab.

d Select Build on resource save (Auto build).

e Click Apply and OK.

The Properties box closes.

5 In the Select Configurations dialog box, click Finish.

Configure the Debugger

1 In Eclipse, choose Run > Debug Configurations. The Debug
Configurations dialog box opens.

2 Double-click C/C++ Application. A throttlecntrl_externenv Default
entry appears under C/C++ Application. The Main tab of the
configuration pane appears on the right side of the dialog box with the
following parameter settings:

A-5

A Installing and Using IDE

Parameter Setting

Name throttlecntrl_externenv Default

C/C++ Application Default\throttlecntrl_externenv.exe

Project throttlecntrl_externenv

Build configuration Default

Enable auto build Cleared

Disable auto build Cleared

Use workspace settings Selected

3 Click Close.

Start the Debugger
To start the debugger:

1 In the main Eclipse window, select Run > Debug. A Confirm Perspective
Switch dialog box opens.

2 Click Yes. Tabbed debugger panes that display debugging information and
controls are displayed in the main Eclipse window.

3 Specify the location of the project files. The Cygwin debugger creates
a virtual drive (for example, main() at /cygdrive/) during the build
process. To run the debugger, Eclipse remaps the drive or locates your
project files. Once Eclipse locates the first file, it automatically finds the
remaining files. In the Eclipse window, click Locate File. The Open
dialog box opens.

For information on using the Edit Source Lookup Path button, see “Set
the Cygwin Path” on page A-6.

4 Navigate to the example_main.c file and click Open. Your program opens
in the debugger software.

Set the Cygwin Path
The first time you run Eclipse, you get an error related to the Cygwin path.

A-6

Integrating and Testing Code with Eclipse™ IDE

To provide the path information:

1 Open the Debug Configurations dialog box by selecting Run > Debug
Configurations > C/C++ Application.

2 Click the Source tab.

3 Click Add. The Add Source dialog box opens.

4 Select Path Mapping and click OK. The Path Mappings dialog box opens.

5 Click Add. In the Compilation path field, type \cygdrive\c\.

6 In the Local file system path field, click the Browse button, navigate to
your C:\ drive, and click OK.

7 Click Apply.

8 Click Close.

Debugger Actions and Commands
The following actions and commands are available in the debugger.

Action Command

Step into F5

Step over F6

Step out F7

Resume F8

Toggle break point Ctrl + Shift + B

A-7

	toc
	Check Bug Reports for Issues and Fixes
	Product Overview
	Embedded Coder Product Description
	Key Features

	Code Generation Technology
	Code Generation Workflows with Embedded Coder
	Code Generation from MATLAB Code
	Code Generation from Simulink Models

	Validation and Verification for System Development
	V-Model for System Development
	Types of Simulation and Prototyping in the V-Model
	Types of In-the-Loop Testing in the V-Model
	Mapping of Code Generation Goals to the V-Model

	Target Environments and Applications
	About Target Environments
	Types of Target Environments
	Applications of Supported Target Environments

	MATLAB Tutorials
	Generate C Code from MATLAB Code
	About MATLAB Coder
	How Embedded Coder Works With MATLAB Coder

	Getting Started Tutorials
	Prerequisites
	Setting Up Tutorial Files

	Controlling C Code Style
	About This Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Copying Files Locally
	Setting Up the MATLAB Coder Project
	Why Specify an Input Definition?
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Key Points to Remember
	Learn More

	Generating Reentrant C Code from MATLAB Code
	About This Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Copying Files Locally
	About the Example
	Contents of matrix_exp.m
	Providing a main Function
	Contents of main.c
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Running the Code
	Key Points to Remember
	Learn More

	Tracing Between Generated C Code and MATLAB Code
	About This Tutorial
	Learning Objectives
	Prerequisites
	Required File

	Copying Files Locally
	Contents of polar2cartesian.m
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Tracing Back to the Source MATLAB Code
	Key Points to Remember
	Learn More

	Simulink Code Generation Tutorials
	Generate C Code from Simulink Models
	Prerequisites
	Example Models in Tutorials

	Configure a Model for Code Generation
	Solver for Code Generation
	Code Generation Target
	Check Model Configuration
	Set Code Generation Objectives with Code Generation Advisor
	Check Model Against Code Generation Objectives
	View Model Configuration Recommendations

	Generate and Analyze C Code
	Generate Code
	Analyze the Generated Code
	Subsystem Report
	Code Interface Report
	Traceability Report
	Static Code Metrics Report
	Code Replacements Report
	Generated Code

	Trace Between Code and Model
	Trace from Model to Code
	Trace from Code to Model

	Customize Code Appearance
	Comments
	Identifiers
	Code Style

	Customize Function Interface and File Packaging
	Model Interface
	Configure Model Initialize and Step Functions

	Subsystem Interface
	Customize File Packaging

	Define Data in the Generated Code
	Control Placement of Data in Generated Files
	Signal Representation in the Generated Code
	Specify Storage Class for Signal Data
	Configure Signal Data Objects
	Resolve Signal with Data Object

	Parameter Representation in the Generated Code
	Save Data Objects
	Save Workspace Variables as a MATLAB-file
	Add MATLAB-file to a Model Callback

	Deploy and Verify Executable Program
	Test Harness Model
	Simulate in Normal Mode
	Simulate in SIL Mode
	Compare Simulation Results
	Improve Code Performance
	More Information About Code Generation in Model-Based Design

	Embedded Coder Documentation
	Embedded Coder Examples

	Installing and Using IDE
	Installing Eclipse IDE and Cygwin Debugger
	Installing the Eclipse IDE
	Installing the Cygwin Debugger

	Integrating and Testing Code with Eclipse IDE
	About Eclipse
	Define a New C Project
	Configure the Debugger
	Start the Debugger
	Set the Cygwin Path
	Debugger Actions and Commands

	tables
	Documenting and Validating Requirements
	Developing a Model Executable Specification
	Developing a Detailed Software Design
	Generating the Application Code
	Integrating and Verifying Software
	Integrating, Verifying, and Calibrating System Components

